

MUTAH UNIVERSITY Faculty of Engineering Department of Chemical Engineering

Optimization of Chemical Processes

COURSE SYLLABUS

Course Code	Course Name	Credits	Contact Hours
0404501	Optimization of Chemical Processes	3	48

INSTRUCTOR/COORDINATOR					
Name	Dr. Salah ALJBOUR				
Email	saljbour@mutah.edu.jo				
Website					

ТЕХТВООК

TextBook:

• T. F. Edgar, D. M. Himmelblau & L. S. Lasdon, 2001. Optimization of Chemical Processes, 2nd Ed.. McGrawHill, New York.

References:

- Ravindran, A., Ragsdell, K. M., Reklaitis, G. V., 2006. Engineering Optimization Methods and Applications, 2nd
- Ed., John Wiley & Sons, Inc., New Jersey.
- Taha, H. A., 2011, Operations Research: An Introduction, 9th Ed., Pearson, New York.

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

Structure and formulation of optimization problems in chemical engineering. Optimality criteria, single and multivariable methods for unconstrained optimization. Linear programming. Optimality criteria and techniques for constrained optimization. Selected applications in chemical engineering.

B. Pre-requisites (P) or Co-requisites (C)

(P): 0404404 Analysis and Modeling of Chemical Processes

C. Course Type (Required or Elective)

Selected Elective

SPECIFIC GOALS

A. Specific Outcomes of Instruction

Students who successfully complete the course will be able to:

- 1. Underst the basic concepts of optimization (SLO-1)
- 2. Underst numerical methods for one dimensional objective function optimization (SLO-1)
- **3.** solve applied linear and NL optimization problems from Chemical Engineering using optimization softwares (SLO-1)
- 4. Enhance students' skills through intensive use of available data resources and short projects with written and oral presentations (SLO-3)

B. Student Learning Outcomes (SLOs) Addressed by the Course

1	2	3	4	5	6	7		
√		✓						

BRIEF LIST OF TOPICS TO BE COVERED					
List of Topics	No. of Weeks	Contact Hours			
Introduction to structure and process optimization	1	3 hr/week			
Introduction to the basic optimization theory	2-4	3 hr/week			
 Optimization Theory: Unconstrained one dimensional objective functions 	5-7	3 hr/week			
Optimization Theory: Unconstrained multidimensional objective functions	8-9	3 hr/week			
Mid Term Exam	1				
Optimization Theory: Linear Programming (LP)	10-11	3 hr/week			
Programming (NLP) with constraints	12-13	3 hr/week			
Case Studies	14-15	3 hr/week			
Final Exam	16				

METHODS OF ASSESSMENT						
No.	Method of assessment	Week and Date	%			
1	Midterm Examination	9th week	30			
2	Homeworks and Activities	All over the Semester	20			
3	Final examination	End of Semester	50			
	100					